skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Hartinger, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Earth’s magnetic field is dominated by the dipole moment, which magnetically connects the northern and southern hemispheres. Because ionospheric and magnetospheric plasmas preferentially move along magnetic field lines, local processes that affect the ionosphere or magnetosphere in one hemisphere can cause changes in the opposite hemisphere. The polar regions are uniquely valuable in geospace science, in part because much of the solar wind’s energy enters the system in polar regions and their magnetospheric, ionospheric, and atmospheric connections are markedly different from the lower latitudes. Geomagnetic conjugates are points in the northern and southern hemispheres linked by Earth’s magnetic field, including both points connected by closed magnetic field lines and points in open-field line regions that are in similar magnetic domains. Conjugate locations are both affected asymmetrically by external factors and have also been shown to alter each other’s environment on the order of minutes, which makes interhemispheric comparisons crucial to understanding the full dynamics of the geospace system. Here, we present conjugate_map, a Python library for flexible geomagnetic coordinate conversions that was designed to facilitate interhemispheric comparisons of geospace events and deployment of polar geospace instruments. As the fifth International Polar Year approaches in 2032–33, this work will help researchers to incorporate interhemispheric geospace investigations into the instrument planning process. 
    more » « less
  2. Abstract Ultraviolet images of Earth's polar regions obtained by high altitude spacecraft have proved to be immensely useful for documenting numerous features of the aurora and understanding the coupling between Earth's magnetosphere and ionosphere. In this study we have examined images obtained by the far ultraviolet Spectrographic Imager camera on the IMAGE satellite during the first three years of its mission (2000–2002) for comparison with observations of large geomagnetic disturbances (GMDs) by ground‐based magnetometers in eastern Arctic Canada. To our knowledge, this is the first study to investigate the use of high‐altitude imager data to identify the global context of GMDs. We found that rapid auroral motions or localized intensifications visible in these images coincide with regions of largedB/dtas well as localized and closely spaced up/down vertical currents and increased equivalent ionospheric currents, but one of the two events presented did not appear to be related to substorm processes. These magnetic perturbations and currents can appear or disappear in a few tens of seconds, thus highlighting the importance of images with a high cadence. 
    more » « less
  3. Access the original poster here: https://agu24.ipostersessions.com/default.aspx?s=56-AC-77-47-70-EA-25-74-40-80-19-49-D4-CA-D6-A7 Link to conference program: https://agu.confex.com/agu/agu24/meetingapp.cgi/Paper/1538608 This is an interactive poster, which was presented at AGU24 as a Lightning presentation. To view HTML files, download locally and open in browser. Abstract: The polar regions are uniquely valuable in geospace science, in part because much of the solar wind's energy enters the system in polar regions and their magnetospheric, ionospheric, and atmospheric connections are markedly different from the lower latitudes. Geomagnetic conjugate points in the northern and southern hemispheres – i.e., points linked by Earth's magnetic field, including both points connected by closed magnetic field lines and points in open-field line regions that are in similar magnetic domains – have been shown to alter each other’s environment on the order of minutes. Space weather conditions in Antarctica, therefore, influence and are influenced by the conditions in the northern hemisphere. This has been observed in the formation of auroral structures. However, the magnetic conjugate relationship is not straightforward to visualize with many common mapping tools, which commonly focus on midlatitude-oriented map projections. Related visualization difficulties also arise from the counterintuitive vertical scale of the geospace environment. Here, we present Python-based tools for mapping multiple instrumentation networks, including ground-based instruments, radars and satellites, to observe geospace events such as the polar eclipses of 2021, and discuss approaches to make the data presentation more flexible and intuitive. In particular, we highlight regions of potential interest for future instrument deployments. 
    more » « less
  4. Abstract Disturbances in ionospheric Total Electron Content (dTEC) with frequencies of 1–100 mHz can be driven from above by processes in the magnetosphere and below by processes on the Earth's surface and lower atmosphere. Past studies showed the potential of dTEC as a diagnostic of magnetospheric Ultra Low Frequency (ULF) wave activity and demonstrated that ULF dTEC can impact space weather by, for example, changing ionospheric conductance. However, most past work has focused on single event studies, lacked magnetospheric context, or used sampling rates too low to capture most ULF waves. Here, we perform a statistical study using Time History of Events and Macrsoscale Interactions during Substorms (THEMIS) satellite conjunctions with a ground‐based magnetometer and Global Navigation Satellite System (GNSS) receiver at 65° magnetic latitude. We find that magnetospheric ULF waves generate dTEC variations across the broad range of frequencies examined in this study (2–50 mHz), and that ULF dTEC wave power is correlated with Kp, AE, solar wind speed, and magnetic field wave power observed in the magnetosphere and on the ground. We further find that magnetospheric ULF waves generate dTEC amplitudes up to TECU ( background), with the largest amplitudes occurring during geomagnetically active conditions, at frequencies below 7 mHz, and at local times near midnight. We finally discuss the implications of our results for magnetosphere‐ionosphere coupling and remote sensing techniques related to ULF waves. 
    more » « less
  5. Abstract Recent observations show very near‐Earth reconnection (∼8–13RE) could efficiently power the ring current during the main phase of geomagnetic storms, but whether the recovery phase might be contributed remains unclear. During the recovery phase of the May 2024 major geomagnetic storm, intense auroral brightening and geomagnetic disturbances were observed at midnight, indicative of particle injections. Current wedges observed by mid‐latitude ground magnetometers around midnight suggest dipolarizing flux bundles (DFBs). The latitude of the auroral brightening was clearly lower than usual, suggesting near‐Earth reconnection (NERX) was closer to Earth than during substorms (∼20–30RE). GOES‐18 at midnight detected magnetic field and plasma signatures consistent with DFBs, following an extremely thin current sheet likely compressed by strong upstream dynamic pressure. These results indicate NERX could have been close enough for resultant DFBs to penetrate geosynchronous orbit and contribute to the ring current during the recovery phase. This scenario deserves further examination in future. 
    more » « less
  6. Abstract Ultra low frequency (ULF; 1 mHz ‐ several Hz) waves are key to energy transport within the geospace system, yet their contribution to Joule heating in the upper atmosphere remains poorly quantified. This study statistically examines Joule heating associated with ionospheric ULF perturbations using Super Dual Auroral Radar Network (SuperDARN) data spanning middle to polar latitudes. Our analysis utilizes high‐time‐resolution measurements from SuperDARN high‐frequency coherent scatter radars operating in a special mode, sampling three “camping beams” approximately every 18 s. We focus on ULF perturbations within the Pc5 frequency range (1.6–6.7 mHz), estimating Joule heating rates from ionospheric electric fields derived from SuperDARN data and height‐integrated Pedersen conductance from empirical models. The analysis includes statistical characterization of Pc5 wave occurrence, electric fields, Joule heating rates, and azimuthal wave numbers. Our results reveal enhanced electric fields and Joule heating rates in the morning and pre‐midnight sectors, even though Pc5 wave occurrences peak in the afternoon. Joule heating is more pronounced in the high‐latitude morning sector during northward interplanetary magnetic field conditions, attributed to local time asymmetry in Pedersen conductance and Pc5 waves driven by Kelvin‐Helmholtz instability. Pc5 waves observed by multiple camping beams predominantly propagate westward at low azimuthal wave numbers , while high‐m waves propagate mainly eastward. Although Joule heating estimates may be underestimated due to assumptions about empirical conductance models and the underestimation of electric fields resulting from SuperDARN line‐of‐sight velocity measurements, these findings offer valuable insights into ULF wave‐related energy dissipation in the geospace system. 
    more » « less
  7. Abstract The weakly ionized plasma in the Earth's ionosphere is controlled by a complex interplay between solar and magnetospheric inputs from above, atmospheric processes from below, and plasma electrodynamics from within. This interaction results in ionosphere structuring and variability that pose major challenges for accurate ionosphere prediction for global navigation satellite system (GNSS) related applications and space weather research. The ionospheric structuring and variability are often probed using the total electron content (TEC) and its relative perturbations (dTEC). Among dTEC variations observed at high latitudes, a unique modulation pattern has been linked to magnetospheric ultra‐low‐frequency (ULF) waves, yet its underlying mechanisms remain unclear. Here using magnetically conjugate observations from the THEMIS spacecraft and a ground‐based GPS receiver at Fairbanks, Alaska, we provide direct evidence that these dTEC modulations are driven by magnetospheric electron precipitation induced by ULF‐modulated whistler‐mode waves. We observed peak‐to‐peak dTEC amplitudes reaching 0.5 TECU (1 TECU is equal to electrons/) with modulations spanning scales of 5–100 km. The cross‐correlation between our modeled and observed dTEC reached 0.8 during the conjugacy period but decreased outside of it. The spectra of whistler‐mode waves and dTEC also matched closely at ULF frequencies during the conjugacy period but diverged outside of it. Our findings elucidate the high‐latitude dTEC generation from magnetospheric wave‐induced precipitation, addressing a significant gap in current physics‐based dTEC modeling. Theses results thus improve ionospheric dTEC prediction and enhance our understanding of magnetosphere‐ionosphere coupling via ULF waves. 
    more » « less
  8. The AAL-PIP collection of magnetometers is part of an autonomous adaptive low-power instrument platform (AAL-PIP) chain of six stations that has been established on East Antarctic Plateau along the 40 deg geomagnetic meridian, to investigate interhemispheric geomagnetically conjugate current systems, waves, and other space weather phenomena in Polar Regions. These six stations, PG0 to PG5, which run autonomously with solar power and two-way satellite communication, are designated at the geomagnetically conjugate locations of the West Greenland geomagnetic chain covering magnetic latitudes from 70 deg to 80 deg. 
    more » « less
  9. The dynamics of Earth’s magnetopause, driven by several different external/internal physical processes, plays a major role in the geospace energy budget. Given magnetopause motion couples across many space plasma regions, numerous forms of observations may provide valuable information in understanding these dynamics and their impacts.In-situmulti-point spacecraft measurements measure the local plasma environment, dynamics and processes; with upcoming swarms providing the possibility of improved spatiotemporal reconstruction of dynamical phenomena, and multi-mission conjunctions advancing understanding of the “mesoscale” coupling across the geospace “system of systems.” Soft X-ray imaging of the magnetopause should enable boundary motion to be directly remote sensed for the first time. Indirect remote sensing capabilities might be enabled through the field-aligned currents associated with disturbances to the magnetopause; by harnessing data from satellite mega-constellations in low-Earth orbit, and taking advantage of upgraded auroral imaging and ionospheric radar technology. Finally, increased numbers of closely-spaced ground magnetometers in both hemispheres may help discriminate between high-latitude processes in what has previously been a “zone of confusion.” Bringing together these multiple modes of observations for studying magnetopause dynamics is crucial. These may also be aided by advanced data processing techniques, such as physics-based inversions and machine learning methods, along with comparisons to increasingly sophisticated geospace assimilative models and simulations. 
    more » « less
  10. The dynamics of Earth’s magnetopause, driven by several different external/internal physical processes, plays a major role in the geospace energy budget. Given magnetopause motion couples across many space plasma regions, numerous forms of observations may provide valuable information in understanding these dynamics and their impacts. In-situ multi-point spacecraft measurements measure the local plasma environment, dynamics and processes; with upcoming swarms providing the possibility of improved spatiotemporal reconstruction of dynamical phenomena, and multi-mission conjunctions advancing understanding of the “mesoscale” coupling across the geospace “system of systems.” Soft X-ray imaging of the magnetopause should enable boundary motion to be directly remote sensed for the first time. Indirect remote sensing capabilities might be enabled through the field-aligned currents associated with disturbances to the magnetopause; by harnessing data from satellite mega-constellations in low-Earth orbit, and taking advantage of upgraded auroral imaging and ionospheric radar technology. Finally, increased numbers of closely-spaced ground magnetometers in both hemispheres may help discriminate between high-latitude processes in what has previously been a “zone of confusion.” Bringing together these multiple modes of observations for studying magnetopause dynamics is crucial. These may also be aided by advanced data processing techniques, such as physics-based inversions and machine learning methods, along with comparisons to increasingly sophisticated geospace assimilative models and simulations. 
    more » « less